One-Sided Tauberian Theorems for Dirichlet Series Methods of Summability
نویسندگان
چکیده
منابع مشابه
One-sided Tauberian Theorems for Dirichlet Series Methods of Summability
We extend recently established two-sided or O-Tauberian results concerning the summability method Dλ,a based on the Dirichlet series ∑ ane−λnx to one-sided Tauberian results. More precisely, we formulate one-sided Tauberian conditions, under which Dλ,a-summability implies convergence. Our theorems contain various known results on power series methods of summability and, in the so-called high in...
متن کاملTauberian Theorems for Summability Transforms
we then write sn → s(A), where A is the A method of summability. Appropriate choices of A= [an,k] for n,k ≥ 0 give the classical methods [2]. In this paper, we present various summability analogs of the strong law of large numbers (SLLN) and their rates of convergence in an unified setting, beyond the class of random-walk methods. A convolution summability method introduced in the next section ...
متن کاملOne-sided Tauberian conditions for a general summability method
Let (un) be a sequence of real numbers and L be an additive summability method with some property. We show that if slow decrease of (un) or one-sided boundedness of the classical control modulo of the oscillatory behavior of (un) is a Tauberian condition for a general summability method L, then one-sided boundedness by a sequence with certain conditions of the general control modulo of the osci...
متن کاملTauberian Theorems for the Product of Borel and Hölder Summability Methods
In this paper we prove some Tauberian theorems for the product of Borel and Hölder summability methods which improve the classical Tauberian theorems for the Borel summability method. Mathematics Subject Classification 2010: 40E05, 40G05, 40G10.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 2001
ISSN: 0035-7596
DOI: 10.1216/rmjm/1020171669